lunes, 18 de enero de 2010

INTRODUCCION A LA BIOENERGIA

La bioenergética describe la transferencia y utilización de la energía en los sistemas biológicos. Utiliza las ideas básicas de la termodinámica, particularmente el concepto de energía libre. Los cambios en la energía libre (DG) proveen una cuantificación de la factibilidad energética de una reacción química y pueden proveer de una predicción de si la reacción podrá suceder o no.

La dirección y cantidad a la cual procede una reacción está determinada por el grado energía libre que dos factores cambian durante la reacción. Estos factores son la entalpía (DH, una medida del cambio de calor entre los reactivos y productos de la reacción) y la entropía (DS, una medida del cambio en el desorden de los reactivos y productos).

La bioenergética se interesa sólo por los estados energéticos inicial y final de los componentes de una reacción, no del mecanismo o del tiempo necesarios para que el cambio químico se lleve a cabo. La bioenergética predice si un proceso es posible; la cinética cuantifica qué tan rápido ocurre la reacción.

La termodinámica puede definirse como el tema de la Física que estudia los procesos en los que se transfiere energía como calor y como trabajo.

Sabemos que se efectúa trabajo cuando la energía se transfiere de un cuerpo a otro por medios mecánicos. El calor es una transferencia de energía de un cuerpo a un segundo cuerpo que está a menor temperatura. O sea, el calor es muy semejante al trabajo.

El calor se define como una transferencia de energía debida a una diferencia de temperatura, mientras que el trabajo es una transferencia de energía que no se debe a una diferencia de temperatura.

Al hablar de termodinámica, con frecuencia se usa el término "sistema". Por sistema se entiende un objeto o conjunto de objetos que deseamos considerar. El resto, lo demás en el Universo, que no pertenece al sistema, se conoce como su "ambiente". Se consideran varios tipos de sistemas. En un sistema cerrado no entra ni sale masa, contrariamente a los sistemas abiertos donde sí puede entrar o salir masa. Un sistema cerrado es aislado si no pasa energía en cualquiera de sus formas por sus fronteras.

La energía interna (o térmica) es la energía total de todas las moléculas del objeto, o sea incluye energía cinética de traslación, rotación y vibración de las moléculas, energía potencial en moléculas y energía potencial entre moléculas. Para mayor claridad, imaginemos dos barras calientes de un mismo material de igual masa y temperatura. Entre las dos tienen el doble de la energía interna respecto de una sola barra. Notemos que el flujo de calor entre dos objetos depende de sus temperaturas y no de cuánta energía térmica o interna tiene cada uno. El flujo de calor es siempre desde el objeto a mayor temperatura hacia el objeto a menor temperatura.

Primera Ley de la Termodinámica

Esta ley se expresa como:

Eint = Q - W

Cambio en la energía interna en el sistema = Calor agregado (Q) - Trabajo efectuado por el sistema (W)

Notar que el signo menos en el lado derecho de la ecuación se debe justamente a que W se define como el trabajo efectuado por el sistema.

Para entender esta ley, es útil imaginar un gas encerrado en un cilindro, una de cuyas tapas es un émbolo móvil y que mediante un mechero podemos agregarle calor. El cambio en la energía interna del gas estará dado por la diferencia entre el calor agregado y el trabajo que el gas hace al levantar el émbolo contra la presión atmosférica.

Segunda Ley de la Termodinámica

La primera ley nos dice que la energía se conserva. Sin embargo, podemos imaginar muchos procesos en que se conserve la energía, pero que realmente no ocurren en la naturaleza. Si se acerca un objeto caliente a uno frío, el calor pasa del caliente al frío y nunca al revés. Si pensamos que puede ser al revés, se seguiría conservando la energía y se cumpliría la primera ley.

En la naturaleza hay procesos que suceden, pero cuyos procesos inversos no. Para explicar esta falta de reversibilidad se formuló la segunda ley de la termodinámica, que tiene dos enunciados equivalentes:

Enunciado de Kelvin - Planck: Es imposible construir una máquina térmica que, operando en un ciclo, no produzca otro efecto que la absorción de energía desde un depósito y la realización de una cantidad igual de trabajo.

Enunciado de Clausius: Es imposible construir una máquina cíclica cuyo único efecto sea la transferencia continua de energía de un objeto a otro de mayor temperatura sin la entrada de energía por trabajo.

Las reacciones químicas que transcurren en un recipiente cerrado pueden alcanzar un estado de equilibrio que se caracteriza porque las concentraciones de los reactivos y de los productos permanecen inalteradas a lo largo del tiempo. Es decir, bajo determinadas condiciones de presión y temperatura la reacción no progresa más y se dice que ha alcanzado el estado de equilibrio.

La constante de equilibrio (K) se expresa como la relación entre las concentraciones molares (mol/l) de reactivos y productos. Su valor en una reacción química depende de la temperatura, por lo que ésta siempre debe especificarse. La expresión de una reacción genérica es:

En el numerador se escribe el producto de las concentraciones de los productos y en el denominador el de los reactivos. Cada término de la ecuación se eleva a una potencia cuyo valor es el del coeficiente estequiométrico en la ecuación ajustada.

Cuando se trata de mezclas gaseosas, a veces resulta más adecuado describir la composición en términos de presiones parciales. Para ello hay que adaptar la expresión de la constante de equilibrio y referirla, en vez de a concentraciones Kc, a presiones parciales Kp.

Kp y Kc se relacionan mediante la ley de los gases ideales, de forma que conocida una puede conocerse la otra:

PV = nRT Þ P = (n/V) RT Þ P = cRT

Para cada componente del equilibrio se puede escribir una ecuación similar, de tal forma que en el siguiente ejemplo puede deducirse que:

Generalizando:

Kp = Kc (RT)Dn

de manera que Dn es la variación del número de moles en la ecuación. Se representa como la diferencia entre el número de moles de gas en los productos y el número de moles de gas en los reactivos:

Dn = ngas (productos) - ngas (reactivos)

en las reacciones en que no existe variación en el número de moles, Kc = Kp.

La magnitud de la constante de equilibrio informa sobre el estado de equilibrio, es decir, sobre la extensión con que una reacción química se lleva a cabo.

Si la constante de equilibrio para una reacción química (Kp o Kc) tiene un valor muy grande, el grado de conversión de reactivos a productos es muy alto. Por el contrario, valores numéricos de Kp o Kc muy pequeños indican que el grado de conversión de reactivos a productos es muy pequeño.

Por ejemplo, en las siguientes reacciones, que transcurren ambas a 298 K:


El valor alto de Kc para la primera ecuación indica que prácticamente toda la cantidad de reactivos se ha convertido en productos.

Por el contrario, el valor bajo de Kc para la segunda ecuación indica que la cantidad de reactivos que se ha convertido en productos es muy baja.

En termodinámica, la energía libre de Gibbs (o energía libre) es un potencial termodinámico, es decir, una función de estado extensiva con unidades de energía, que da la condición de equilibrio y de espontaneidad para una reacción química (a presión y temperatura constantes).

La segunda ley de la termodinámica postula que una reacción química espontánea hace que la entropía del universo aumente, ΔSuniverso > 0, así mismo ΔSuniverso esta en función de ΔSsistema y ΔSalrededores. Por lo general sólo importa lo que ocurre en el sistema en estudio y; por otro lado el cálculo de ΔSalrededores puede ser complicado.

Por esta razón fue necesario otra función termodinámica, la energía libre de Gibbs, que sirva para calcular si una reacción ocurre de forma espontánea tomando en cuenta solo las variables del sistema.

De acuerdo a la segunda ley, para saber si un proceso químico es espontáneo se debe estimar la entropía del sistema y de su entorno. El problema surge desde el momento en que quieres estudiar un sistema, debes conocer no solo el sistema, sino también el entorno.


Considera que tu sistema es una reacción química que ocurre a P constante y libera la energía dH sistema. Esta energía la recibe el entorno y por lo tanto:


dH entorno = - dH sistema
si el entorno y el sistema están a la misma temperatura se cumple que:
dS entorno = dH entorno/T = - dH sistema / T


Al sustituir esta ecuación en:
dSuniverso = dS sistema + dS entorno


El miembro derecho de la ecuación solo queda en función del sistema y la temperatura.
dSuniverso = dS sistema - (dHsistema/T); si multiplico por T
TdS universo = - dH sistema + TdS sistema
reordenando: TdS universo = - [dH - TdS sistema]

Cuando ocurre un proceso espontáneo TdSuniverso >0, lo que implica que
[dH sistema - TdS sistema] <0>o es un proceso no espontáneo (no ocurre)
Si dG = 0 se está en un estado de equilibrio, donde dH = TdS
Si dG menor que cero es un proceso espontaneo (ocurre)

La transducción se entiende como cualquier operación que transforma magnitudes de determinado tipo en otras distintas, proporcionales a las anteriores.

La bioenergetica tiene una amplia gama de aplicaciones como el estudio de procesos energeticos en lo sistemas biologicos por ejemplo: el metabolismo que se divide en anabolismo y catabolismo. En el gasto de energia por el hecho de realizar un trabajo, y el intercambio de energia que se da entre un sistema vivo y su ambiente.




Referencias:



www.nonsolofitness.it/.../biologia/bioenergetica-atp.html

http://laguna.fmedic.unam.mx/
-evazquez/04037bioenergetica.html

html.rincondelvago.com/bioenergetica.html