domingo, 21 de marzo de 2010

Bioenergetica mitocondrial


La síntesis de ATP en el cloroplasto se explica mediante la hipótesis quimiosmótica de Mitchell, de forma muy semejante como ocurre en la mitocondria. El transporte de electrones en la cadena transportadora de la membrana tilacoidal produce el bombeo. La síntesis de ATP en el cloroplasto se explica mediante la hipótesis quimiosmótica de Mitchell, de forma muy semejante como ocurre en la mitocondria. El transporte de electrones en la cadena transportadora de la membrana tilacoidal produce el bombeo de protones desde el estroma hacia el espacio tilacoidal a nivel del complejo citocromo b6 - f , lo que genera un gradiente electroquímico. El flujo de protones a favor del gradiente desde el espacio tilacoidal hasta el estroma, a través del canal de protones de la ATP - sintasa, activa la síntesis de ATP a partir de ADP y fosfato.

Los electrones se emplean para reducir el NADP+ a NADPH. El ATP y el NADPH producidos de esta forma pueden utilizarse en la fase oscura para las reacciones de síntesis, en las que se reducen moléculas sencillas, como el CO2, para formar glúcidos.
Un gradiente electroquímico es una variación espacial tanto del potencial eléctrico como de la concentración de sustancia a través de una membrana. Ambos componentes son frecuentemente debidos a los gradientes iónicos (especialmente gradientes de protones), y de ellos puede resultar un tipo de energía potencial disponible para la realización de las distintas actividades celulares. Esto puede ser calculado como una medida termodinámica y combina los conceptos de energía almacenada en forma de potencial químico (que representa el gradiente de concentración de un ión a través de una membrana celular) y la energía electrostática, (lo que explica la tendencia de un ión a moverse en relación al potencial de membrana).
l potencial electroquímico es importante en la química electroanalítica y en la industria, en la cual tiene diversas aplicaciones (baterías, pilas de combustible…). Constituye una de las muchas maneras de intercambio de energía potencial en las cuales la energía se conserva.

En los procesos biológicos, la dirección de los movimientos iónicos realizados por difusión o transporte activo a través de una membrana está determinada por el gradiente electroquímico. En las mitocondrias y los cloroplastos, los gradientes de protones se utilizan para generar un potencial quimiosmótico (que es también conocido como fuerza motriz protónica). Esta energía potencial es utilizada para la síntesis de ATP a través de la fosforilación oxidativa.

Un gradiente electroquímico esta constituido por dos componentes. En primer lugar, el componente eléctrico, el cual se origina debido a la diferencia de cargas a través de la membrana lipídica. En segundo lugar, el componente químico es debido a la diferencia de concentración de iones a ambos lados de la membrana. La combinación de estos dos factores determina la favorable dirección termodinámica para el movimiento de un ión a través de la membrana.

El gradiente electroquímico es análogo a la presión hidrostática a través de una presa hidroeléctrica. Proteínas de transporte de membrana, tales como la bomba de sodio-potasio, son equivalentes a las turbinas que convierten la energía potencial del agua en otras formas de energía física o química y los iones que atraviesan la membrana son equivalentes al agua que termina en la parte inferior de la presa. Además, la energía puede ser utilizada para bombear el agua hasta el lago que se encuentra encima de la presa. De modo similar, la energía química de las células puede ser utilizada para crear gradientes electroquímicos.


Cadena transportadora de electrones (CTE)

Es un sistema multienzimático ligado a membrana que transfiere electrones desde moléculas orgánicas al oxígeno.

La CTE comprende dos procesos:

  1. Los electrones son transportados a lo largo de la membrana, de un complejo de proteínas transportador ("carrier") a otro.
  2. Los protones son translocados a través de la membrana, estos significa que son pasados desde el interior o matriz hacia el espacio intermembrana. Esto construye un gradiente de protones. El oxígeno es el ace ptor terminal del electrón, combinándose con electrones e iones H+para producir agua.


Los tres componentes de la cadena respiratoria son: 3 grandes complejos proteicos con moléculas trasnportadoressa y sus enzimas correspondientes, un componente no proteico: UBIQUINONA (Q) que están embebidos en la membrana y una pequeña proteína llamada citocromo c que es periférica y se ubica en el espacio intermembrana, pero afdosado laxamente a la memb. interna.

En el animación superior se muestra como el NADH transfiere iones H+ y electrones dentro de la cadena transportadora de electrones.

La secuencia de eventos:

  1. Pasa los electrones a través de el 1º complejo (NADH-Q reductasa) hasta la ubiquinona, los iones H+ traspasan la membrana hacia el espacio intermembrana.

  2. el 2º complejo (citocromo c reductasa) trasnsfiere electrones desde la Q a el citocromo c, generando un nuevo bombeo de protones al exterior.
  3. el 3º complejo es una citocromo c oxidasa, pasa los e- del citocromo c al oxígeno, el oxígeno reducido (1/2 O2-) toma dos iones H+ y forma H2O.

Balance neto: los electrones entran a la CTE desde portadores tales como el NADH o el FADH, llegan a la "oxidasa terminal" (una oxígeno-reductasa) y se "pegan" al oxígeno.

La fosforilación oxidativa es una ruta metabólica que utiliza energía liberada por la oxidación de nutrientes para producir adenosín trifosfato (ATP). Aunque las diversas formas de vida utilizan una gran variedad de nutrientes, casi todas realizan la fosforilación oxidativa para producir ATP, la molécula que provee de energía al metabolismo. Esta ruta es tan ubicua, debido a que es una forma altamente eficaz de liberación de energía, en comparación con los procesos alternativos de fermentación, como la glucólisis anaeróbica.

Durante la fosforilación oxidativa, los electrones son transferidos desde un donante de electrones a un aceptor de electrones, como el oxígeno, a través de reacciones redox. Estas reacciones liberan energía, la cual es utilizada para producir ATP. En eucariotas, estas reacciones redox son llevadas a cabo en las mitocondrias por una serie de complejos de proteínas, mientras que en los procariotas, estas proteínas se encuentra n ubicadas en la membrana interna de la célula. Estos grupos relacionados de enzimas son llamados cadena de transporte de electrones. En eucariotas, están involucrados cinco complejos de proteínas, mientras que en procariotas se presentan muchas enzimas diferentes, utilizando una variedad de donantes y aceptores de electrones. La energía liberada por estos electrones desplazándose a través de la cadena de transporte de electrones es utilizada para transportar protones a través de la membrana interna mitocondrial, en un proceso llamado quimiosmosis. Esto genera energía potencial bajo la forma de un gradiente de pH y un potencial eléctrico a través de la membrana. El almacenamiento de energía es aprovechado permitiendo que los protones fluyan de regreso a la membrana a favor del gradiente, a través de la enzima ATP sintasa. La enzima utiliza esta energía para generar ATP desde el adenosín difosfato (ADP), en una reacción de fosforilación. Esta reacción es llevada a cabo por el flujo de protones, que provoca la rotación de una parte de la enzima.

Aunque la fosforilación oxidativa es una parte vital del metabolismo, produce especies reactivas del oxígeno tales como superóxido y peróxido de hidrógeno, lo que lleva a la propagación de radicales libres, provocando daño celular, contribuyendo a enfermedades y, posiblemente, al envejecimiento. Las enzimas que llevan a cabo esta ruta metabólica son blanco de muchas drogas y productos tóxicos que inhiben su actividad.


Es la síntesis de ATP que se produce cuando se exponen cloroplastos aislados a la acción de la luz, en presencia de ADP y fosfato. La formación de ATP a partir de la reacción de ADP y fosfato, es el resultado del acoplamiento energético de la fosforilación al proceso de transporte de electrones inducido por la luz, de la misma forma que la fosforilación oxidativa está acoplada al transporte de electrones y al consumo de oxígeno en las mitocondrias.
ADP + Pi + cloroplastos + luz à ATP
Pi = fosfato inorgánico.
H2O + NADP+ + Pi + ADP+ cloroplastos + luz à ½ O2 + NADPH + H+ + ATP + H2 O

La molécula de H2 O del lado izquierdo de la ecuación, cede los dos electrones necesarios para la reducción del NADP+ y el átomo de oxígeno que se libera en forma de ½ O2. La molécula de H2O del lado derecho de la ecuación procede de la formación de ATP a partir de la reacción de ADP + Pi.
En la membrana tilacoidal como resultado de la fotólisis del agua y de la oxidación de la plastoquinona ( PQH2 ) se generan protones ( H+ ); que originan un fuerte gradiente de concentración de protones( H+ ) al ser transportados del lumen tilacoidal hacia el estroma. Este gradiente de pH a través de la membrana es responsable de la síntesis de ATP, catalizada por la ATPsintasa (o sintetasa) o conocida tambien como factor de acoplamiento; ya que acopla la síntesis de ATP al transporte de electrones y protones a través de la membrana tilacoidal. La ATPsintasa existe en los tilacoides del estroma y consta de dos partes principales: un tallo denominado CFo, que se extiende desde el lumen de la membrana tilacoidal hasta el estroma y una porción esférica ( cabeza) que se conoce como CF1 y que descansa en el estroma. Esta ATPasa es similar a la de las mitocondrias donde sintetiza ATP.

El flujo cíclico de electrones tiene lugar en algunos eucariotes y bacterias fotosintéticas primitivas. No se produce NADPH , sino ATP solamente. Esto puede ocurrir cuando las células pueden requerir un suministro de ATP adicional, o cuando no se encuentre presente NADP+ para ser reducido a NADPH. En el fotosistema II, el bombeo de iones H+ dentro del tilacoide crea un gradiente electroquímico que culmina con la síntesis de ATP a partir de ADP +Pi.
Las halobacterias, que crecen en agua extremadamente salada, son aerobias facultativas; ya que pueden crecer en ausencia de oxígeno. Los pigmentos púrpuras conocidos como retinal (pigmento encontrado en el ojo humano) funcionan como las clorofilas . La bacteriorodopsina es un complejo formado por retinal y proteínas de la membrana, la que genera electrones que establecen un gradiente de protones que activa una bomba ADP-ATP, que produce ATP en presencia de la luz, pero en ausencia de clorofila. Este comportamiento ayuda a sustentar la universalidad de la teoría quimio-osmótica de Mitchell, en la función de sintetizar ATP.


El uso de inhibidores de la cadena ha permitido trazar el paso de los electrones a través de la cadena y determinar el punto de entrada de diversos sustratos. La velocidad a la cual el oxígeno es consumido por una suspensión de mitocondrias es una medida del funcionamiento de la cadena de transporte de electrones. La velocidad puede ser medida mediante un electrodo de oxígeno.

Gran parte del conocimiento de la función mitocondrial ha resultado de estudios con compuestos tóxicos. Inhibidores específicos se han usado para distinguir el sistema de transporte de electrones del sistema de fosforilación oxidativa, y ha ayudado a definir la secuencia de los transportadores redox en la cadena. Si la cadena se bloquea en un punto, todos los transportadores anteriores quedan más reducidos, y los posteriores más oxidados.

Hay seis tipos de venenos que afectan la función mitocondrial:

1. Inhibidores de la cadena que bloquean la cadena respiratoria.

La rotenona, toxina de una planta, utilizada por indios amazónicos como veneno, también ha sido usada como insecticida.

2. Inhibidores de la fosforilación oxidativa, venenos que inhiben la ATP-sintasa.

La oligomicina, un antibiótico producido por Streptomyces, inhibe a la ATPasa al unirse a la subunidad Fo e interferir en el transporte de H+ a través de Fo, inhibe por lo tanto la síntesis de ATP. Diciclohexilcarbodiimida (DCCD), un reactivo soluble en lípidos, también inhibe el transporte de protones por Fo al reaccionar con un residuo de glutámico en una de las subunidades de Fo de mamíferos. En estas condiciones el gradiente de protones que se produce es mayor que lo normal, sin embargo la energía potencial de éste no puede ser utilizada para producir ATP.

3. Venenos que hacen permeable la membrana mitocondrial interna a los protones. Estos agentes eliminan la relación obligada entre la cadena respiratoria y la fosforilación oxidativa que se observa en mitocondria intacto. Estos venenos, como el 2,4 dinitrofenol (DNP), el carbonilcianuro-p-trifluorometoxi-hidrazona (FCCP) y el carbonilcianuro-m-clorofenilhidrazona (CCCP) desacoplan la fosforilación oxidativa de la cadena respiratoria, se conocen como agentes desacopladores.

4. Inhibidores de transporte (atractalósido) que previenen ya sea la salida del ATP o la entrada de material combustible a través de la membrana mitocondrial interna.
5. Ionósforos (valinomicina, nigericina)
que permiten el paso a través de la membrana a compuestos que normalmente están impedidos.
6. Inhibidores del ciclo de Krebs (arsenito) que bloquean una o más enzimas del ciclo de Krebs.
El Genoma mitocondrial, también llamado ADN mitocondrial, es el material genético de las mitocondrias, los orgánulos que generan energía para la célula. El ADN mitocondrial se reproduce por sí mismo semi-autónomamente cuando la célula eucariota se divide. El ADN mitocondrial fue descubierto por Margit M. K. Nass y Sylvan Nass utilizando microscopia electronica y un marcador sensitivo al ADN mitocondrial.[1] Evolutivamente el ADN mitocondrial y el ADN nuclear descienden de genomas circulares pertenecientes a bacterias, que fueron englobadas por un antiguo ancestro de las células eucarióticas.
Este ADN, al igual que los ADN bacterianos, es una molécula bicatenaria, circular, cerrada, sin extremos. En los seres humanos tiene un tamaño de 16.569 pares de bases, conteniendo un pequeño número de genes, distribuidos entre la cadena H y la cadena L. Cada mitocondria contiene entre 2 y 10 copias de la molécula de ADN. En él están codificados dos ARN ribosómicos, 22 ARN de transferencia y 13 proteínas que participan en la fosforilación oxidativa. Estos genes mitocondriales son: genes de ARNtsgenes de ARNrsgenes de ARNms, codificando para diversas proteínas y los ribosomas ; plaquetas; globulos blancos; pancreas; axilias El número de genes en el ADN mitocondrial es de 37,[2] frente a los 20.000 - 25.000 genes del ADN cromosómico nuclear humano. Otra característica importante del ADN mitocondrial es que no se recombina. Ello implica que los únicos cambios que haya podido haber en el ADN mitocondrial se deben exclusivamente a mutaciones a lo largo de multitud de generaciones. Los cálculos estadísticos que se han realizado informan que, en los mamíferos y en concreto en el hombre, cada 10.000 años aproximadamente surge una mutación en una de las bases del ADN mitocondrial (esto no es del todo cierto, aunque sí lo es para el fragmento que más mutaciones sufre, que consta de unos 500 pares de bases). Es decir, la diferencia entre una mujer que hubiera nacido hace 40.000 años y un descendiente directo por vía materna que viviera en la actualidad sería por término medio de 4 bases. De hecho, un estudio realizado en los ADN mitocondriales de los europeos (Bryan Sykes) asegura que todos los europeos provienen de siete mujeres, las siete hijas de Eva. La más antigua habría vivido hace 45.000 años y la más moderna hace unos 15.000 años. La Eva mitocondrial, la antepasada común más moderna de todos los seres humanos que hay en el mundo, se remontaría de este modo a unos 150.000 años.

Este tipo de enfermedad hereditaria es relativamente infrecuente. Es causada por mutaciones en el ADN mitocondrial, no cromosómico. La enfermedad mitocondrial tiene diferentes síntomas que pueden afectar a diferentes partes del cuerpo. Las mitocondrias tienen su propio ADN. En los últimos años se ha demostrado que más de 20 trastornos hereditarios resultan de las mutaciones en el ADN de las mitocondrias. Dado que las mitocondrias provienen sólo del óvulo son heredadas exclusivamente de la madre. Una persona con un trastorno mitocondrial puede presentar patrones de herencia materna (solo los individuos relacionados por un pariente materno están en riesgo). Los hombres no transmiten la enfermedad a sus hijos.



No hay comentarios:

Publicar un comentario