domingo, 21 de marzo de 2010

Transporte a traves de membranas


La permeabilidad es la capacidad de un material para que un fluido lo atraviese sin alterar su estructura interna. Se afirma que un material es permeable si deja pasar a través de él una cantidad apreciable de fluido en un tiempo dado, e impermeable si la cantidad de fluido es despreciable.

La velocidad con la que el fluido atraviesa el material depende de tres factores básicos:

  • la porosidad del material;
  • la densidad del fluido considerado, afectada por su temperatura;
  • la presión a que está sometido el fluido.

Para ser permeable, un material debe ser poroso, es decir, debe contener espacios vacíos o poros que le permitan absorber fluido. A su vez, tales espacios deben estar interconectados para que el fluido disponga de caminos para pasar a través del material.

Existen tres tipos de permeabilidad:
- Absoluta.
- Efectiva.
- Relativa.
La permeabilidad absoluta se define como la capacidad que tiene una roca de permitir el flujo de fluidos a través de sus poros interconectados, cuando el medio poroso se encuentra completamente saturado por un fluido.
Cuando más de una fase se encuentra presente en un medio poroso, la conductividad o capacidad que tiene una roca de permitir el flujo de cada una de las fases a través de dicho medio poroso se define como permeabilidad efectiva. La permeabilidad efectiva a una fase dada es menor que la permeabilidad absoluta y es función de la saturación de la fase.
La sumatoria de las permeabilidades efectivas siempre es menor que la permeabilidad absoluta, debido a las siguientes razones:
- Algunos canales que normalmente permiten el flujo cuando existe una sola fase, son bloqueados cuando dos o más fases se encuentran presentes en el medio poroso, por ello, el número total de canales que permiten el flujo se reduce y la capacidad que tiene la roca de permitir el flujo de fluidos es menor.
- La presencia de interfases entre los fluidos que saturan el medio poroso, implican la presencia de tensiones interfaciales y presiones capilares, por lo tanto se generan fuerzas que tienden a disminuir la velocidad de flujo de los fluidos a través del medio poroso.
La razón entre la permeabilidad efectiva y una permeabilidad base se define como permeabilidad relativa. Dependiendo del propósito con el que se desean utilizar las curvas de permeabilidad relativa, se pueden usar dos bases diferentes:
Ec. 2.19
Donde:
Krx = Permeabilidad relativa de la fase x.
Kx = Permeabilidad efectiva de la fase x.
K = Permeabilidad absoluta.
(K)Sx max = Permeabilidad efectiva de la fase x medida a la saturación máxima de dicha fase.
Debido a que la sumatoria de las permeabilidades efectivas no puede ser mayor que la permeabilidad absoluta, entonces la sumatoria de las permeabilidades relativas (que tienen como base la permeabilidad absoluta) no puede ser mayor que 1.

Los potenciales de membrana son cambios rápidos de polaridad a ambos lados de la membrana que separa dos disoluciones de diferente concentración, como la membrana celular que separa el interior y el exterior de una célula. Duran menos de 1 milisegundo. Cuando se habla de potenciales de membrana, se debería de hablar del "potencial de difusión" o "potencial de unión líquida". Dicha diferencia de potencial esta generada por una diferencia de concentración iónica a ambos lados de la membrana celular. Los potenciales de membrana son la base de la propagación del impulso nervioso.

El potencial de Nernst está definido como el nivel de potencial de difusión a través de una membrana que se opone directamente a la difusión neta de un ion en particular a través de la misma. Dicho potencial está en el interior de la membrana y se asume que el líquido extracelular se mantiene a un potencial eléctrico de cero voltios si la temperatura corporal es la adecuada (aproximadamente 37 °C).


*Ecuación de Nernst:


\text{FEM(milivoltios)} = \pm  61 \log\frac{C_i}{C_e}


** La ecuación de Nernst calcula el potencial de Nernst en el hipotético caso que la membrana solo sea permeable a un ion univalente
.


Dicho potencial viene determinado por el cociente de las concentraciones de un ion específico a ambos lados de la membrana. Como se sabe, los niveles de concentración iónica (Na, K, Cl
) son diferentes dentro y fuera de la membrana (sin mencionar la acción dinámica de la bomba de sodio-potasio) y por tanto, puede haber mayor concentración de un ion en particular en un lado de dicha membrana.

Ejemplo: Veamos el caso del ión sodio, Na+, del que sabemos que es más abundante en el líquido extracelular. Si se incrementa la concentración de dicho ion, mayor será la tendencia a difundir dentro de la célula, entonces, mayor será el potencial de Nernst necesario para impedir la difusión neta adicional. Siendo así directamente proporcional a la concentración de dicho ion.

Termodinámicamente, el flujo de sustancias de un compartimento a otro puede realizarse a favor o en contra de un gradiente, ya sea de concentración, o electroquímico. Si el intercambio de sustancias se realiza a favor del gradiente, esto es, en el sentido de los potenciales decrecientes, el requerimiento de energía externo al sistema es nulo; si, en cambio, el transporte se hace en contra del gradiente, se requiere el aporte de energía, energía metabólica en nuestro caso Por ejemplo, un mecanismo químico de separación clásico que no requiere un aporte de energía externo es la diálisis: en ella, una membrana semipermeable separa dos soluciones que difieren en la concentración de un mismo soluto. Si la membrana permite el paso de agua pero no el del soluto, sucede que el agua fluye hacia el compartimento más concentrado en soluto, a fin de establecer un equilibrio en el cual la energía del sistema sea mínima. Para que suceda este flujo, puesto que el agua se desplaza de un lugar muy concentrado a uno muy diluido en disolvente (en cuanto a soluto, se da la situación opuesta), y, por ello, lo hace a favor de gradiente, no se requiere un aporte de energía externo.

La naturaleza de las membranas biológicas, especialmente la de sus lípidos, es anfipática, lo que se traduce en que forman una bicapa que alberga una parte interna hidrofóbica y una externa hidrofílica, permite que surja una posibilidad de transporte, la difusión simple o difusión pasiva, que consiste en la difusión de sustancias a su través sin gasto de energía metabólica y sin ayuda de proteínas transportadoras. En el caso de que la sustancia a transportar posea una carga neta, difundirá no sólo en respuesta a un gradiente de concentración, sino también al potencial de membrana, esto es, al gradiente electroquímico.


Difusión simple

Como se mencionó anteriormente, la difusión pasiva es un fenómeno espontáneo puesto que suceden incrementando la entropía del sistema, y disminuyendo la energía libre No requiere de la intervención de proteínas de membrana, pero sí de las características de la sustancia a transportar y de la naturaleza de la bicapa. Para el caso de una membrana fosfolipídica pura, la velocidad de difusión de una sustancia depende de su:
  • gradiente de concentración,
  • hidrofobicidad,
  • tamaño,
  • carga, si la molécula posee carga neta.

Estos factores afectan de diversa manera a la velocidad de difusión pasiva:

  • a mayor gradiente de concentración, mayor velocidad de difusión,
  • a mayor hidrofobicidad, esto es, mayor coeficiente de partición, mayor solubilidad en lípido y por tanto mayor velocidad de difusión,
  • a mayor tamaño, menor velocidad de difusión,
  • dado un potencial de membrana, es decir, la diferencia de potencial entre la cara exoplasmática y la endoplasmática de la membrana, y un gradiente de concentración se define un gradiente electroquímico que determina las direcciones de transporte energéticamente favorables de una molécula cargada, dependiendo de la naturaleza de ésta y del signo del potencial, si bien la mayor parte de las células animales poseen carga negativa en su exterior
La difusión simple a través de la membrana lipídica muestra una cinética de no saturación, esto es, que, puesto que la tasa neta de entrada está determinada sólo por la diferencia en el número de moléculas a cada lado de la membrana, la entrada aumenta en proporción a la concentración de soluto en el fluido extracelular. Esta característica distingue la difusión simple de los mecanismos de penetración por canales de transporte mediado

Difusión facilitada


Bajo el mismo principio termodinámico que en el caso de la difusión simple, es decir, que el soluto a transportar lo hace a favor de gradiente, la difusión facilitada opera de modo similar, pero está facilitada por la existencia de
proteínas canal, que son las que facilitan el transporte de, en este caso, agua o algunos iones y moléculas hidrófilas. Estas proteínas integrales de membrana conforman estructuras en forma de poro inmersas en la bicapa, que dejan un canal interno hidrofílico que permite el paso de moléculas altamente lipófobas como las mencionadas anteriormente. La apertura de este canal interno puede ser constitutiva, es decir, continua y desregulada, en los canales no regulados, o bien puede requerir una señal que medie su apertura o cierre: es el caso de los canales regulados.

Transporte activo y cotransporte


En él se efectúa un transporte en contra del gradiente de concentración o electroquímico y, para ello, las proteínas transportadoras implicadas consumen energía metabólica (comúnmente adenosín trifosfato). La hidrólisis del compuesto que actúa como moneda energética puede ser muy evidente, como en el caso de los transportadores que son ATPasas, o puede tener un origen indirecto: por ejemplo, los cotransportadores emplean gradientes de determinados solutos para impulsar el transporte de un determinado compuesto en contra de su gradiente, a costa de la disipación del primer gradiente mencionado. Pudiera parecer que en este caso no interviene un gasto energético, pero no es así puesto que el establecimiento del gradiente de la sustancia transportada colateralmente al compuesto objetivo ha requerido de la hidrólisis de ATP en su generación mediante unos determinados tipos de proteínas denominados bombas. Por ello, se define transporte activo primario como aquél que hidroliza ATP de forma directa para transportar el compuesto en cuestión, y transporte activo secundario como aquél que utiliza la energía almacenada en un gradiente electroquímico.

El descubrimiento de la existencia de este tipo de transportadores se produjo al estudiar cinéticamente la transferencia de moléculas a través de las membranas: para algunos solutos, se observó que la velocidad de entrada alcanza una meseta a partir de cierta concentración externa a partir de la cual no se produce un incremento significativo de velocidad de captación, esto es, surge una respuesta tipo curva logística. Se interpretó que el transporte aquí se produce por la formación de un complejo sustrato-transportador, conceptualmente idéntico al complejo enzima-sustrato de la cinética enzimática. Por ello, cada proteína transportadora posee una constante de afinidad por el soluto que es igual a la concentración del soluto cuando la velocidad de transporte es la mitad de su valor máximo (equivaldría, para el caso de un enzima, a la constante de Michaelis-Menten).

Algunos rasgos importantes del transporte activo, además de su capacidad de intervenir aun en contra de gradiente, su cinética y el empleo de ATP, son: su elevado grado de selectividad y su facilidad de inhibición farmacológica selectiva

Transportadores

Un transportador puede movilizar diversos iones y moléculas; según la direccionalidad, se distinguen:
  • antiportadores: aquéllos que transportan un tipo de molécula en contra de su gradiente al mismo tiempo que desplazan uno o más iones diferentes a favor del suyo, siendo ambos gradientes contrapuestos,
  • simportadores: los que desplazan el compuesto a transportar en contra de su gradiente acoplando este trasiego al desplazamiento de uno o más iones diferentes a favor del suyo, que, en este caso, es equivalente al de la molécula a transportar.

Ambos reciben el nombre de contransportadores.

Bombas


Una bomba es una proteína que hidroliza ATP para transportar a través de una membrana un determinado soluto a fin de generar un gradiente electroquímico que confiera unas características de potencial a ésta. Dicho gradiente posee un interés por sí mismo para la definición del estado de la célula, como es el potencial de Nernst, pero interviene activamente en el transporte de sustancias a través de la membrana, que es el tema aquí tratado, puesto que aporta un aumento de entropía al sistema en caso de cotransporte de sustancias que se encuentran en trasiego en contra de su gradiente.

Una de las bombas de mayor relevancia en células animales es la bomba sodio-potasio, que opera mediante el mecanismo siguiente:

  1. unión de tres Na+ a sus sitios activos.
  2. fosforilación de la cara citoplasmática de la bomba que induce a un cambio de conformación en la proteína. Esta fosforilación se produce por la transferencia del grupo terminal del ATP a un residuo de ácido aspártico de la proteína.
  3. el cambio de conformación hace que el Na+ sea liberado al exterior.
  4. una vez liberado el Na+, se unen dos moléculas de K+ a sus respectivos sitios de unión de la cara extracelular de la proteína.
  5. la proteína se desfosforila produciéndose un cambio conformacional de esta, lo que produce una transferencia de los iones de K+ al citosol.

Referencias

es.wikipedia.org/wiki/Transporte_de_membrana

www.uam.es/angeluis.villalon/cyta/fisiologiacyta3.pdf

www.biologia.edu.ar/.../membrana/ppal.htm

No hay comentarios:

Publicar un comentario